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FUNDAMENTAL REGULARITIES IN THE MOTION OF AN ARBITRARY GAS 

E. A. Orudzhaliev UDC 533.536 

The problem of the derivation of the equation of state for real, dissociating, 
and ionizing gases expressed in terms of the similarity numbers for gaseous 
flows and the determination of the most general connections among heterogene- 
ous variables are given. 

We write the equation of state in the most general form 

R 
pu=Zef T, Zef = Z e .  ( l )  

Here Z designates the coefficient of compressibility, and e is the reduced number of moles 
obtained as a result of dissociation. For example, for dissociating nitrogen tetroxide 

8 = I "~- CLIO + (X'IO(X'20, 

where ~ z o  and ~20 are the degrees of dissociation of the first and second stages of the 
reaction in the reactive system N20 ~ $ 2NO 2 $ 2NO + 02 . Below, we will operate with the 
effective coefficient (Zef) , which takes account of the dissociation of molecules as well 
as the nonideality of gas. 

When considering a real gas in the absence of dissociation E = i and Zef = Z, i.e., 
everywhere when applied to a real gas, we will treat Zef as a coefficient of compressibility. 

If we consider, as an arbitrary gas, a diatomic gas with account for dissociation and 
ionization, then 

Zef - -  1 + ~ - t - 2 % ,  

where ~ is the degree of dissociation and ~e is the degree of ionization. 

The velocity of sound in an arbitrary gas can be represented as 

a = yaid ., 

where y is a correcting coefficient, and aid is the velocity of sound in an ideal gas: 

(2) 

r 

V ' k R T - ( 3 )  aid = 

In order to derive an analytic expression for the correcting coefficient y, we perform 
the following transformations. We use the differential equations of thermodynamics in the 
form 

[ 2 

-27.,' ~ 
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'Op 
co (5) 

As is known, the square of the velocity of sound in an arbitrary gas can be written as 

(op) 
a 2 : - - ~  -~o s " (6) 

Dividing both parts of (4) by Cp, solving simultaneously Eqs. (i), (5), and (6), and 
considering Cp in the general case as the effective isobaric heat capacity (if we consider 
a dissociating gas), we obtain 

Cp ef 
(7) 

From (i) we obtain the following partial differential equations, which enter into (7), 

(Or) RT [Zef__p(OZ, ef~ ] 

-~- 1. Zef-/- T k - - ~ ] , ]  (9) 

Equation (7), taking account of (8) and (9) and of the notation 

r ~  I , rl=Zef--P \ Op ]r 
( OZef ~ 

~:Zef + T [-~--] ~ 

(i0) 

( i i )  

can be written in the form 

; RT Zef 
/ [ R oz ) (12) 

a = ~ V k ~1 ~Cpe f 

Equation (12) represents the velocity of sound in an arbitrary gas, where the correcting 
coefficient is in correspondence with (2) 

Zef 

\ bCp,ef 

In [1],  the fol lowing expanded express ions  for  the c o e f f i c i e n t s  q and ~ are  obtained 
for  the d i s s o c i a t i n g  n i t rogen  t e t r o x i d e  with account for  p a r t i a l  d e r i v a t i v e s  in (10) and 
( i i ) .  

The details of the effect of the coefficient Zef on different thermogasdynamic depen- 
dences are presented in [2]. 

If the gas under consideration is nondissociating but real, then instead of Zef the 
coefficient of compressibility will be Z. In this case partial derivatives can be deter- 
mined by means of graphical differentiation from experimental diagrams of compressibility. 

In accordance with (2) and (3) the expressions for the critical velocity can be writ- 
ten in the form 

act :Yer  ] / k  R Tc r . (14) 
p ,  

We use the concepts given in [3]: 

7" (15) 
Tcr 

1234 



P 

PWac r ( 1 6 )  

Substituting the value of p/p in (16) from (i) and taking account of (14), (15), we obtain 

Y.cr 1 
Zef = ~ " (17) 

Equation (17) contains important information. Being free of all constraints (typical 
of the ideal gas condition), Eq. (17) turns out to be applicable in the most general situ- 
ations due to the introduction of two multipliers, the first of which is a correcting co- 
efficient for the equation of state, and the second, for the square of the velocity of sound 
as a function of temperature in the critical state. 

From Eq. (16) we can see that the reduced pressure depends on the static pressure p and 
the density p. The value ~, entering into (17), is related to the thermodynamic temperature 
(~ = T/Tcr), i.e., we have in (17) the thermal quantities p, p, and T. Besides, (17) con- 
tains l, which is one of the similarity numbers for gaseous flows (I = W/acr), where the 
role of the constant is played by a physical constant (i/k). Equation (17) plays the role 
of the equation of state under conditions of flow and appears useful in calculations and 
also in an analysis of the physical features of the process; therefore, expansion of its 
region of applicability is undoubtedly of important significance. 

Coefficients Zcr and Ycr, which have a clear physical meaning, represent fairly compli- 
cated theoretical expressions. In Zcr, the nonideality of the gas, which is due to the 
effect of forces of attraction and repulsion of gas molecules, dissociation, and the effect 
of forces of attraction and repulsion on dissociation, is taken into account. However, this 
complexity is justified; it is dictated by the high complexity of the process itself. 

In Eq. (17), an interesting fact is exhibited: in all the regimes of flow the complex 

a~ Y~r 
x Zef remains constant and equal to I/k. Thus, this complex is invariant, with numerical 

values equal to: for monoatomic gases (k = 1.67) 0.585, for diatomic gases (k = 1.4) 0.714, 
and for triatomic and polyatomic gases (k = 1.3) 0.77. 

We also note that in the given complex all three reduced parameters and the two correct- 
ing multipliers are combined. 

With the help of identical transformations we can obtain different modifications of Eq. 
( 1 7 ) .  

Let us derive the same complex, but expressed in terms of the Mach number. We transform 
the multiplier Zef/Ycr 2. We take the values of Zef from (I) and Ycr 2 from (14); taking ac- 
count of (15), we can write 

Zef  p k 1 
2 2 

Ycr p "r a cr 
( 1 8 )  

Substituting the value of p/p from (i) into (18) and taking account of (3), we have 

1 1 ( a i d  /~ 
2 = - -  -- �9 ( 1 9 )  

Yet T \ acr  

The equation of state for an ideal gas is 

R 
pV:id = -  T. 

Comparing (20) and (i), we obtain 

u = Zcfvid.  

The continuity equation for an ideal gas is 

OUid ' = FWid. 

The continuity equation for a real or dissociating gas is 

( 2 0 )  

(21) 

(22) 
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O0 = FW. 

Solving simultaneously (22) and (23) with consideration of (21), we have 

(23) 

For an ideal gas 

W =- ~ f  ~'id" 

]V~d- Wid 
aid 

(24) 

(25) 

For a real or dissociating gas 

w Zefwid 

act a,cr 
(26) 

Substituting the value Wid in (26) from (25), we write 

~=ZefMid ' a,id 
a c r  

or after simple transformations 

aid. ] 2 =  1 , %2 

, , a ~  / z~f M~d " (27) 

From (27), Eq. (19) can be represented in the form 

1 1 1 %z 

Yet Zef ~ Mid 

Substituting (28) in (17), we have 

From (24) and (25)  we obtain 

~ZefM2d 1 
~, ' = T "  

(28) 

(29) 

or taking account of (2) 

W 2 

l"~li~d - -  2 2 ' 

Zefa id 

M~d ~ZyZ y2 
2 2 2 z~f~ zlf (30) 

Substituting the value Mid = from (30) into (29): 

.~M~t] ~ 1 

Zef% k 
(31) 

Equation (31) is a modification of Eq. (17). The left side is an invariant. Here 
both similarity numbers (M and I) occur for gaseous flows. Equation (31) can be used in 
calculations when it is necessary to use the Mach number. 

When performing calculations according to Eq. (31), the value of y is determined from 
(13) with subsequent use of (i0) and (ii) by the method described in [i, 2]. When perform- 
ing calculations according to (15), however, the value of y2 characterizing critical condi- 
tions is determined from the same dependences (13), (i0), and (ii), but for the critical 
conditions it is written in the form 

(Zef).~ 

er ~ (Cpef) er ~er 

[(0za)= ] ( i0' ) 
%r=(%f)or--P[ ~ ] ' 

1236 



o =r = (zef) =r + T=r 
] 
Jvcr" ( i i ' )  [ 

In conclusion, we would like to draw attention to the fact that Eqs. (17) and (31) are 
original because they combine thermal quantities and the flow velocity. On the other hand, 
the invariance makes it possible to solve further problems of applied thermogasdynamics and 
to investigate a complicated process of flow (dissociation of molecules, etc.). Studies of 
the obtained dependences disclose fundamental features of the motion of an arbitrary gas and 
promote the solution of problems which are of actual significance in contemporary technology 
involving high-speed flows of real gases. 
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SOME FEATURES OF THE THERMAL STRATIFICATION OF LIQUIDS 

DURING NATURAL CONVECTION IN CYLINDRICAL CAVITIES 

WITH ANNULAR RIBS 

V. A. Evstaf'ev UDC 536.252:621.642.03 

The effect of annular ribs on the temperature of the free surface of a ~iquid 
during natural convection ~n a heated vertical cylindrical cavity has been 
investigated. A method is proposed for calculating the limiting value of 
this temperature. 

Free convective motions occur in a liquid during heat exchange between a container or 
cavity and the surroundings which lead to nonlinear temperature distributions over its vol- 
ume, or thermal stratification. This thermal stratification can have a significant effect 
on the intensity of the thermophysical processes occurring in the container, as a result of 
which its study is of practical interest. 

Real containers often contain framing elements or other devices which are positioned 
in the zone of the free-convection boundary layer and which have an effect on the tempera- 
ture distribution over the volume of the liquid. An experimental investigation into the 
effect of ribs on thermal stratification was carried out in [1-3]. It was found that the 
presence of ribs leads to a decrease in the vertical temperature gradient of the liquid on 
average with respect to the height of the part of the container. The results of experi- 
ments with visualization of the liquid flows have been given. It was noted in [i] that the 
temperature of the free surface of the liquid in the container with ribs was somewhat higher 
than in the container without ribs, while the opposite result was found in [2, 3]. There 
are no methods available for calculating the thermal stratification in containers with ribs. 

In the present paper an investigation has been made into the effect of annular ribs 
on the maximum temperature of a liquid in a heated cavity or container, which is the tem- 
perature of the free surface, and a method is proposed for calculating the maximum value of 
this temperature. For carrying out the experiments two cylindrical containers were used 
(Fig. i) with heights of 0.25 and 0.75 m and diameters of 0.25 m. The cylindrical part of 
each vessel was made of stainless steel of thickness 2.10 -3 m and at the bottom end had a 
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